This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

1,3-PROPANEDIAMINE, 1,4-BUTANEDIAMINE (PUTRESCINE) AND 1,5-PENTANEDIAMINE (CADAVERINE) COMPLEXES WITH ZINC(II), CADMIUM(II) AND MERCURY(II) HALIDES AND PSEUDOHALIDES I. S. Ahuja^a; Raghuvir Singh^a

^a Chemistry Department, Banaras Hindu University, Banaras, India

To cite this Article Ahuja, I. S. and Singh, Raghuvir(1975) '1,3-PROPANEDIAMINE, 1,4-BUTANEDIAMINE (PUTRESCINE) AND 1,5-PENTANEDIAMINE (CADAVERINE) COMPLEXES WITH ZINC(II), CADMIUM(II) AND MERCURY(II) HALIDES AND PSEUDOHALIDES', Journal of Coordination Chemistry, 4: 3, 181 – 190 To link to this Article: DOI: 10.1080/00958977508075897

URL: http://dx.doi.org/10.1080/00958977508075897

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

1,3-PROPANEDIAMINE, 1,4-BUTANEDIAMINE (PUTRESCINE) AND 1,5-PENTANEDIAMINE (CADAVERINE) COMPLEXES WITH ZINC(II), CADMIUM(II) AND MERCURY(II) HALIDES AND PSEUDOHALIDES

I. S. AHUJA and RAGHUVIR SINGH

Chemistry Department, Banaras Hindu University, Banaras – 5 India

(Received May 30, 1974; in final form November 18, 1974)

Coordination compounds formed by zinc(II), cadmium(II) and mercury(II) halides and pseudohalides with 1,3-propanediamine, 1,4-butanediamine (putrescine) and 1,5-pentanediamine (cadaverine) have been prepared and characterized by molecular conductance and infrared spectral measurements down to 200 cm⁻¹. Possible structures for these complexes in the solid state are discussed.

INTRODUCTION

Ethylenediamine possesses two donor sites and may act as (i) bidentate chelating ligand forming fivemembered rings resulting in monomeric structures, or (ii) bidentate bridging ligand resulting in polymeric structures and coordination compounds formed by this ligand with metal(II) salts have been the subject of several investigations. The chelating or cis- and bridging or trans- configurations of the coordinated ligand can readily be distinguished by infrared spectroscopy. The trans- form being more symmetrical gives rise to fewer absorptions in the infrared while multiplicity of bands indicate the less symmetrical cis- configuration of ethylenediamine.¹ Earlier investigations on Group II B metal complexes²⁻⁵ have shown that $MenX_2$ (M=Zn(II), Cd(II) or Hg(II), X=Cl and en=ethylenediamine) are polymeric structures with ethylenediamine in the transconfiguration bridging between two metal ions. On the other hand, 1:1 mercury(II) cyanide and thiocyanate and 1:2 zinc(II) and cadmium(II) thiocomplexes with ethylenediamine are cyanate considered to have monomeric structures with cischelating form of ethylenediamine.⁶ Furthermore, N.N-diethylethylenediamine, an unsymmetrically disubstituted ethylenediamine, is shown to form 1:1 complexes not only with mercury(II) halides and pseudohalides but with zinc(II) and cadmium(II) thiocynates as well. All the N,N-diethylethylenediamine complexes studied are considered as four-coordinated monomeric structures with chelated form of the diamine.⁷ However, symmetrically disubstituted ethylenediamines are known to form

monomeric as well as polymeric structures⁸⁻¹³ having chelating and bridging diamine, respectively, with transition metal(II) salts. Although infrared spectral studies appear to have been made on the coordination compounds formed by 1,3-propanediamine and 1,4-butanediamine with some metal(II) salts¹²⁻¹⁴ there is no report on the complexes of zinc(II), cadmium(II) and mercury(II) halides and pseudohalides with 1,3-propanediamine, 1,4-butanediamine and 1,5-pentanediamine. The increased number of methylene groups introduced between the two amino groups of ethylenediamine would be expected to have an effect on the nature of bonding of the ligand. Coordination of the two amino groups to different metal ions would result in polymeric structures but bonding with the same metal ion (bidentate chelating) would lead to the formation of six-, seven- and eight-membered rings with 1,3-1,4-butanediamine propanediamine, and 1.5pentanediamine, respectively. Five- and six-membered rings (including the metal ion) are very common.¹⁵ Examples of the five-membered rings are provided by ethylenediamine and presence of substituents on the carbon atoms do not affect the ring stability. Increasing the number of carbon atoms between the two amino groups would result in an expansion of the ring size if the two donor sites coordinate with the same metal ion. 1,4-Butanediamine and 1,5-pentanediamine are well known by their biological names - putrescine and cadaverine, respectively. Both these compounds also called "biogenic amines" have long been known for their unpleasant odour as well as for their role in protein metabolism and are the important precursors of

TABLE I							
Analytical and	conductance data						

$ \begin{array}{c centpound} & \begin{array}{c centpound} & \begin{array}{c} \begin{array}{c} Nethod \\ of \\ prepn.* \\ (^{\circ}C) \end{array} \end{array} \\ \begin{array}{c centpound} & \begin{array}{c} Nethod \\ of \\ (^{\circ}C) \end{array} \end{array} \\ \begin{array}{c centpound} \end{array} \\ \begin{array}{c centpound} \hline \\ (^{\circ}C) \end{array} \end{array} \\ \begin{array}{c centpound} \hline \\ (^{\circ}C) \end{array} \\ \begin{array}{c centpound} \hline \\ (^{\circ}C) \end{array} \end{array} \\ \begin{array}{c centpound} \hline \\ (^{\circ}C) \end{array} \\ \begin{array}{c centpound} \hline \\ \end{array} \\ \begin{array}{c centpound} \hline \\ \begin{array}{c centpound} \hline \\ (^{\circ}C) \end{array} \\ \begin{array}{c centpound} \hline \\ \begin{array}{c centpound} \hline \\ (^{\circ}C) \end{array} \\ \begin{array}{c centpound} \hline \\ \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \begin{array}{c centpound} \hline \\ \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \begin{array}{c centpound} \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c cenp$	Analytical and conductance data										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Method	м р	Analytical		data		Conductance		Nature	Struc-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compound	of prepn.*	(°C)	Meta Found	Calc.	Ani Found	on (%) Calc.	data Concen- tration (x 10 ⁻³)	Λ <u>Μ</u>	of diamine bonding	tural type
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_n(DP)C1_2$	A	269 a	31.2	31.1	33.9	33.7	œ		br	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(UP), Br,	A	214	17.7	17.5	41.9	41.8	@		ch	IV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(DP)	A	235	14.1	13.9	54•5	54.2	1.011	212.2	\mathbf{ch}	IV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca(DP), Ci,	A	185	34.3	34.1	21.7	21.5	0		ch	IV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd(DP) Br	A	189	26.5	26.7	38.1	38.0	0		\mathbf{ch}	IΛ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd(DP) I	A	164	21.7	21.6	50.0	49.9	0.836	98 .8	ch	IV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca(DP)(NCS)	A	229	37•4	37.1	38.5	38.3	1.033	122.0	ŧ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(DP)C1	A	193	58.0	58.0	20.6	20.5	0		br	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(UP)Br	в	176	46.3	46.2	37.0	36.8	1.022	40.7	ch	II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(DP)(CN)	A	138	61.5	61.4	•••	•••	1.080	3.6	ch	II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(DP)(SCN)	С	108	51.5	51.3	30.0	29.7	0.975	90.1	br	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_n(DP)(NCS)_2^2$	A	206	25.8	25.6	45.4	45.4	0.988	100.6	ch	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(DB)C12	A	275	29•3	29.0	32.0	31.7	0		ch	II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn(DB)Br ₂	A	268	21.0	20.8	51.4	51.1	0.869	16.1	ch	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Zn(DB)_2I_2$	A	286	12.5	12.4	48.5	48.6	9		ch	١V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Zn(DB)(NCS)_2$	A	194	24.3	24.2	43.4	43.1	0.922	42.5	ch	II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca('DB)C12	A	298 a	41.5	41.3	26.2	26.2	(4)		br	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd(DB)Br ₂	A	271	31.3	31.1	44.2	44.4	9		br	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ca(DB)I2	A	228	25.0	24.8	56.0	55.8	0.973	38.8	ch	II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca(DB)(NCS)	A	239	35•7	35.5	30.4	36.7	3		br	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg()B)C12	В	210 d	56.0	55.7	20.0	19.8	9		br	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(DB)Br	В	188 d	45.8	45.6	35.5	35.7	9		ch	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(DB) -(CN)	Α	171	67.8	67.6			0.987	4.0	\mathbf{ch}	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hg(DB)(SCN)2	C	107	49 .8	49•5	28.6	2 8. 7	0.951	100.6	ch	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(DAP)C12	A	276	27.6	27•4	29.7	29.7	4		br	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(DAP)Br	А	272	20.1	20.0	49.0	48.8	<i>a</i>		ch	II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn(DAP)(NCS)	А	181	23.3	23.0	41.2	40.9	1.103	127.0	\mathbf{ch}	11
Cd (DAP) Br_2 A20830.330.043.042.7 $@$ chIICd (DAP) I_2A20424.023.755.154.80.97440.2chIICd (DAP) (NOS)_2A19134.034.035.335.10.945118.4 \dagger Hg (DAP) Cl_2B183 d53.953.719.119.0 $@$ chIIHg (DAP) Br_2B14243.543.334.834.50.97843.0chIIHg (DAP) (CN)_2A13956.556.51.1413.3chII	Cd(DAP)C1,	A	236	39.5	39.4	25.0	24.8	@		ch	II
Cd (DAP) I_2 A20424.023.755.154.80.97440.2chIICd (DAP)(NOS)_2A19134.035.335.10.945118.4†Hg(DAP)01_2B163 d53.953.719.119.0 $@$ chIIHg(DAP)Br_2B14243.543.334.834.50.97843.0chIIHg(DAP)(CN)_2A13956.556.51.1413.3chII	Cd(DAP)Br	A	208	30.3	30.0	43.0	42.7	0		\mathbf{ch}	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca(DAP)12	A	204	24.0	23.7	55.1	54.8	0.974	40.2	ch	11
$H_{g}(DAP)C1_{2}$ B183 a53.953.719.119.0 $@$ chII $H_{g}(DAP)Br_{2}$ B14243.543.334.834.50.97643.0chII $H_{g}(DAP)(CN)_{2}$ A13956.556.51.1413.3chII	Cd(DAP)(NCS)	A	191	34.0	34.0	35.3	35.1	0.945	118.4	t	
$Hg(DAP)Br_2$ B 142 43.5 43.3 34.8 34.5 0.978 43.0 ch II Hg(DAP)(GN) ₂ A 139 56.5 56.5 1.141 3.3 ch II	Hg(DAP)C1,	в	183 a	53.9	53.7	19.1	19.0	Q		ch	II
Hg(DAP)(CN) A 139 56.5 56.5 1.141 3.3 oh II	Hg(DAP)Br	в	142	43•5	43.3	34.8	34.5	0.978	43.0	ch	II
	Hg(DAP)(CN)	A	139	50.5	56.5	•••		1.141	3.3	ch	II

DP = 1,3-propanediamine; DB = 1,4-butanediamine; DAP = 1,5-pentanediamine.

(a) = insoluble in dimethylformamide,

br = bridging; ch = chelating, $\dot{\tau}$ = distinction of the structural type and the nature of diamine bonding cannot be made, (&) = $\Lambda_{\rm M}$ in mho mole⁻¹ cm⁻².

hormones as well as the components of certain biological constituents but it is only recently that some work as been carried out on their biological effects.

The present paper describes the preparation, molecular conductance and infrared spectra down to 200 cm^{-1} of the coordination compounds formed by the interaction of zinc(II), cadmium(II) and mercury(II) halides and pseudohalides with 1,3-propanediamine, 1,4-butanediamine and 1,5-pentanediamine.

EXPERIMENTAL SECTION

The following methods of preparation were used:

- (A) The metal(II) salt was dissolved in ethanol and an excess of the ligand added.
- (B) The metal(II) salt was dissolved in methanol and an excess of the ligand added.
- (C) An excess of the ligand was added to an aqueous solution of K_2 Hg(SCN)₄.

The complexes which precipitated or crystallized out by the above methods were suction-filtered, washed with ethanol/methanol and dried.

Conductivity measurements were made on freshly prepared $\sim 1 \text{ mM}$ solutions in purified dimethyl-formamide at 25°C (±0.5°C) with a Philips Conductivity measuring bridge Model PR 9500.

Infrared spectra in the rock salt region were recorded as NUJOL mulls supported between NaCl plates on a Perkin-Elmer 257 spectrophotometer. The $650 - 200 \text{ cm}^{-1}$ i.r. spectra were recorded as NUJOL mulls supported between thin polythene sheets on a Perkin-Elmer 621 spectrophotometer equipped with CsI optics.

RESULTS AND DISCUSSION

The complexes obtained in the present study, their analytical and conductance data are listed in Table I. The list of complexes obtained is not likely to be the complete range of complexes as only a limited number of preparative methods were used. All the complexes studied, with the exception of mercury(II) cyanide, are insoluble in the common organic solvents like methanol, acetone, acetonitrile, nitrobenzene and nitromethane. Infrared spectral data of a few of the representative 1:1 complexes considered to have four-coordinated polymeric chain structures with the *trans*- form of the diamine bridging between the two metal ions are listed in Table II. Tables III and IV

TABLE II								
Infrared spectra of 1:1 bridged diamine complexes								
$(4000-200 \text{ cm}^{-1})$								

		· · · · · · · · · · · · · · · · · · ·	7	
Zn(DI	P)C12	Cd(DB)Cl ₂	(DAP)Cl ₂	assignments
3250	m	328 3 m	3260 m	NH ₂ asym. stretch
3230	m	3266 w	3240 m	NH ₂ asym. stretch
3148	s	3174 w	3158 в	NH ₂ sym. stretch
2950	sh	2950 sh	2955 sh	CH ₂ asym. stretch
2920	m	2924 w	2930 m	CH ₂ asym. stretch
2850	m	2850 m	2860 m	CH ₂ asym. stretch
1600 -	vs	1608 в	1600 vs	NH2 scissor
1460	s	1458 s	1462 s	CH ₂ scissor
1375	8	1374 s	1380 m	CH2 wag.
1300	ms	•••	1320 m	NH2 wag.
•••		1264 ms	1260 s	CH2 twist
1210	ms	•••	1200 m	CH ₂ twist
1154 ·	vs	1124 vs	1165 v s	NH2 wag.
1045 :	m	1046 s	1055 w	CN stretch
1027	w	•••	1030 в	CN stretch
960 :	s	9 5 9 s	970 в	NH2 twist
700 ·	W	724 m	70 5 w	CH2 rock
560 :	ms	541 в	560 ms	NH2 rock
520 i	ms	•••	540 ms	NH2 rock
450 ·	w	•••	465 w	chain skeletal
430	m	425 w	433 w	chain skeletal
365 1	m	316 m s	395 ms	N - N stretch
310 1	m	•••	305 m	M - X stretch (X = C1)
296 1	m	•••	• • •	M - X stretch
485 ·	W	•••	• • •	other bands
400 1	W	•••	•••	other bands
250	w	27 2 w	285 m	other bands

list the i.r. spectral data for 1:1 and 1:2 complexes, respectively, which are considered as monomeric, four-coordinated and six-coordinated structures with *cis*- chelating form of the diamine. Frequencies due to coordinated cynano- and thiocyanato- groups are shown in Table V. Assignments of the metal – nitrogen and metal – halogen/pseudohalogen bands are tentative. Complexes of the type MLX_2 (L = bidentate chelating ligand and X = halogen or pseudohalogen) may be postulated as fourcoordinated tetrahedral structures – type I or II, with bridged or chelated form of the diamine, respectively. Similarly ML_2X_2 complexes may be formulated as types III or IV in which the halogen atoms occupy terminal positions with bridging or chelating form of

TABLE III Infrared spectra of 1:1 chelated diamine complexes $(4000-200 \text{ cm}^{-1})$

	(100				
Zn(DP) (NCS) ₂	Zn(DB) (NCS) ₂	Zn(DAP) (NCS) ₂	Tentative assignments		
3306 w	3283 ms	3296 m	NH, asym. stretch		
3280 w	3254 m	3262 m	NH ₂ asym. stretch		
3250 ms	•••	•••	NH ₂ asym. stretch		
3200 m	3217 s	3220 VB	NH ₂ sym. stretch		
3120 m	3133 W	3135 m	NH ₂ sym. stretch		
•••	• • •	3108 ¥	NH, sym. stretch		
2950 sh	2960 sh	2960 sh	CH, asym. stretch		
2920 m	2920 ms	29 20 m	CH_ asym. stretch		
2850 m	2850 ms	2860 m	CH ₂ sym. stretch		
1585 m	1580 w	1580 m	NH2 scissor		
1572 m	1566 ms	1563 в	NH ₂ scissor		
1560 w	1556 sh	• • •	NH ₂ scissor		
1460 в	1458 s	1462 s	CH2 scissor		
1395 m	1394 ms	1400 w	CH_ wag.		
13 7 5 s	1370 ms	1380 s	CH2 wag.		
1360 m	1350 vw	1375 sh	CH_ wag.		
1310 m	1313 vw	1330 m	NH2 wag.		
1300 🕷	130 8 m	1310 w	NH2 wag.		
1280 m	128 7 m	1270 m	CH ₂ twist		
1237 w	1266 ms	1256 m	CH ₂ twist		
1 1 94 s	1204 s	1200 s	CH2 twist		
1148 в	1162 s	1150 v s	NH2 wag.		
1100 s	1096 s	1100 s	Ring mode		
1065 m	1042 ms	1050 m	CN stretch		
1030 w	1025 s	1030 в	CN stretch		
1020 w	• • •	• • •	CN stretch		
9 95 vs	1000 ms	•••	NH ₂ twist		
980 w	96 4 w	9 7 5 m	NH ₂ twist		
96 0 w	937 в	955 mas	NH2 twist		
90 4 s	904 w	•••	CH2 rock		
715 w	733 m	728 m	NH2 rock		
•••	600 m	•••	NH2 rock		
•••	541 m	550 ms	NH ₂ rock		
435 m	433 mw	425 ms	Ring mode		
380 m	366 m	385 ms	M - N stretch		
•••	400 m	•••	other bands		
330 w	278 w	330 w	other bands		
240 w	•••	305 w	other bands		

the diamine. Infrared spectra of some of the representative compounds showing the bridging and chelating forms of the ligands used are shown in Figures 1-3.

Although the techniques of electronic absorption spectroscopy and magnetic susceptibility measure-

ments yield unambiguous structural information of the transition metal compounds these could not be studied for the zinc(II), cadmium(II) and mercury(II) complexes as these metal ions have closed shells of valence electrons. However, stereochemistry of the compounds studied in the present investigation has been postulated from a comparison of the metalligand modes and the vibrations due to coordinated anionic groups with similar modes in complexes whose structures are known from X-ray crystallography and/or magnetic susceptibility and infrared spectral studies.

Infrared spectra of the diamines used in the present study exhibit only a small number of absorption bands in the uncoordinated state. In spite of the increased number of methylene groups in between the two amino groups the i.r. spectra of these diamines show close resemblance to the i.r. spectrum of ethylenediamine. The vibrational spectra of

Structural Types

FIGURE 1 1,3-Propanediamine complexes $A - Zn(DP)Cl_2$; $B - Zn(DP)_2Br_2$; $C - Zn(DP)(NCS)_2$

1,3-propanediamine, 1,4-butanediamine and 1,5pentanediamine, their hydrochlorides¹⁶⁻¹⁸ and their metal complexes 12 - 14, 19 have received some attention. Infrared spectra of the compounds studied here show clearly that the diamines used are coordinated via both the nitrogen atoms of the amino groups. The formation of coordinate bond between the diamines and the metal(II) salts is immediately apparent in the NH and CN stretching regions. The NH stretching frequency region $(3400-3100 \text{ cm}^{-1})$ generally shows three or four distinct sharp peaks in all these compounds. Only two bands would be expected for the NH asymmetric and symmetric stretching modes. However, appearance of more than two bands may possibly be due to Fermi interactions.

The NH deformation mode at $\sim 1600 \text{ cm}^{-1}$ in the free diamines appear as medium to strong sharp peaks usually with a shoulder in the region $1610-1550 \text{ cm}^{-1}$ in the complexes studied here. This shift in the NH deformation mode has also proved useful in distinguishing the chelating and bridging

forms of the diamines.^{20,21} The CN asymmetric and symmetric stretching vibrations in the uncomplexed diamines occur at $\sim 1090 \text{ cm}^{-1}$ and $\sim 1070 \text{ cm}^{-1}$, respectively. On coordination these bands suffer negative shifts and occur at ~ 1050 cm⁻¹ and $\sim 1030 \text{ cm}^{-1}$, respectively. The shift of NH and CN stretching modes to lower frequencies in the complexes can be explained as resulting from the electron drainage from the nitrogen atom on account of its coordination to the metal ion. In general infrared spectra of the complexes with the diamines bridging between two metal ions exhibit 9-10 absorption bands in the region 1600 - 650 cm⁻¹ while 20 - 22bands are observed in complexes with chelated form of the diamine. Splitting of bands in the spectra of chelated diamines generally occurs in two regions (i) 1320-1250 cm⁻¹, and (ii) 1070-1000 cm⁻¹ Usually one sharp band is observed for bridging diamines at $\sim 1040 \text{ cm}^{-1}$ which splits up into 2-3 bands in the range 1070-1000 cm⁻¹, while the band at ~ 1250 cm⁻¹ splits up into 2-3 bands in the

FIGURE 2 1,4-Butanediamine complexes A - Zn(DB)Cl₂; B - Cd(DB)Cl₂

range 1325-1250 cm⁻¹ in the chelated diamine complexes. In addition to these the NH deformation mode suffers a significant negative shift (vide supra) and shows multiplicity of bands when the two nitrogen atoms of the diamine coordinate to the same metal ion.

Infrared spectra of the complexes reported here have many features in common to those of the ethylenediamine complexes. Spectra of the compounds marked type I (Table I) show remarkable similarities with those of the 1:1 complexes of zinc(II), cadmium(II) and mercury(II) chlorides with ethylenediamine which have been shown by infrared, Raman and/or X-ray structural investigations to have linear polymeric chain structures with the diamine in its *trans*- configuration acting as a bridge between two metal atoms.^{1-5,22,23} On the other hand, i.r. spectra of the complexes considered to have chelated form of the diamines (Types II and IV) exhibit multiplicity of bands and resemble closely with those of the metal(II)—ethylenediamine com-

plexes in which the cis- chelating form of ethylenediamine has been established. 1,20,21,24,25 Thus 1,3-propanediamine, 1,4-butanediamine and 1,5pentanediamine may act as bidentate bridging or chelating ligands; when chelating they lead to the formation of six-, seven- and eight-membered rings, respectively. Several complexes of metal salts are known with six-, seven- or eight-membered rings which are quite stable.¹⁵ The present studies indicate that among the mercury(II) complexes of the same stoichiometry (metal:ligand ratio) with a given diamine the tendency towards chelation increases in going from chloro- to bromo- derivatives. Further the tendency for chelation also appears to increase as the number of methylene groups increases between the two amino groups.

Metal(11) Halide Complexes

From a consideration of the metal-halogen stretching $modes^{26}$ the 1:1 zinc(II) and mercury(II)

$2n(DP)_2Br_2$	$2n(DP)_2I_2$	$Cd(DP)_2Cl_2$	$Ga(DP)_2Br_2$	$Zn(DB)_2I_2$	Tentative assignments
3280 m	3266 m	3308 m	3285 w	3238 ms	NH ₂ asym. stretch
3242 m	3180 ms	3250 m	32 35 s	3183 ms	NH ₂ asym. stretch
3180 ms	3100 m	3160 s	3136 ms	3117 m	NH ₂ sym. stretch
3100 m	•••	•••	•••	•••	NH ₂ sym. stretch
2950 sh	2950 sh	2960 sh	2940 sh	2950 sh	CH, asym. stretch
2920 m	2924 m	2930 w	29 2 0 m	2917 m	CH ₂ asym. stretch
2850 ms	2852 ms	2880 mw	2855 m	2850 ms	CH ₂ sym. stretch
1583 vs	1575 sh	1600 sh	1582 s	1575 sh	NH, scissor
1575 w	1560 s	1583 ms	1575 sh	1562 ms	NH ₂ scissor
•••	1554 sh	• • •	1554 sh	1554 sh	MH, scissor
1460 в	1458 в	1470 s	1460 s	1458 m	CH, scissor
	1437 sh	1440 sh	1435 sh	1450 m	CH_ scissor
1375 s	1374 s	1384 ms	13 72 s	1370 s	CH, wag.
1365 sh		1370 m	1365 VW	• • •	CH, wag.
1335 m	1333 m	1310 w	1300 v w	1325 w	NH, wag.
1320 m	1316 m			• • •	CH, wag.
1290 mw	1295 ms	1280 m	1265 m	1287 w	CH ₂ twist
1240 m	1233 в	1255 m	1245 w	1270 m	CH ₂ twist
12 15 vw	120 8 w			1200 vw	CH ₂ twist
1157 s	1 1 58 s	1150 sh	1166 VW	1170 s	NH_ Wag.
	•••		1140 sh	1141 s	NH, Wag.
1110 s	1108 w	1120 ms	1110 m	1108 w	$Rin_{\mathcal{E}}$ mode
•••		1100 ms	1090 m	1083 m	Ring mode
1055 m	1050 ms	1060 в	1074 w	1041 sh	CN stretch
1030 w	1033 m	1035 m	1050 s	1033 ms	CN stretch
1007 m	10 1 6 w	1010 в	1000 s		NH _o twist
980 m	1000 s	970 в	960 s	987 w	NH ₂ twist
965 s	9 7 5 s			962 в	NH _o twist
910 m	9 14 s	8 90 s	8 80 s	933 s	CH_ rock
	858 w	• • •	* * *	900 w	CH_ rock
715 w	717 w	763 m	752 w	783 w	CH_ rock
		720 w	715 W	717 W	2
670 ms	654 s	• • •	•••	675 ms	NH ₂ rock
600 w	612 ms	600 s	59 1 s	617 ms	NH ₂ rock
56 5 m	562 ms	562 m	560 m	583 w	NH2 rock
535 ms	520 ms	505 ms	505 ms	525 ms	NH ₂ rock
430 ms	425 ms	465 s	460 в	435 m	Ring mode
365 mms	338 ms	355 m	338 m	300 ms	M - N stretch

260 ms 228 w

320 w

260 m

474 в 292 m

485 m 330 w 305 m 230 ms

TABLE IV Infrared spectra of 1:2 chelated diamine complexes (4000-200 cm⁻¹)

other bands

450 ms 417 ms

FIGURE 3 1,5-Pentanediamine complexes $A - Zn(DAP)Cl_2$; $B - Zn(DAP)Br_2$; $C - Zn(DAP)(NCS)_2$

halide complexes in the present studies shown to have chelating diamines (Table III) may be considered as monomeric four-coordinated structures (type II). On the other hand, 1:1 compounds with bridging diamines (Table II) are considered as fourcoordinated polymeric structures with only terminal halogens (type I). The 1:2 complexes ML_2X_2 are postulated to have an octahedral environment of the ligand atoms around the metal ions. The two halogens in the 1:2 complexes may be in cis- or transpositions to each other. The cis- and trans- isomers in bisethylenediamine metal complexes can easily be recognized from their infrared spectra. Consistent variations in the cis- and trans- isomers in bisethylenediamine complexes have been observed in the regions (A) $1630 - 1520 \text{ cm}^{-1}$ (B) $1150 - 1120 \text{ cm}^{-1}$ and (C) $900 - 850 \text{ cm}^{-1}$ and several complexes have thus been characterized.²⁷⁻²⁹ Infrared spectra of the 1:2 complexes studied here indicate clearly that the two

anionic groups are in trans- positions to each other as the unsymmetrical cis- disposition of these groups will give rise to greater number of absorption bands in the regions cited above. $^{27-29}$ Cadmium(II) halides gave 1:2 complexes with 1,3-propanediamine but 1:1 with 1,4-but ane diamine and 1,5-pentane diamine. Rock salt region i.r. spectra show bidentate chelating nature of the diamines in all the cadmium(II) halide complexes except the 1:1 cadmium(II) chloride and bromide complexes with 1,4-butanediamine. The bidentate chelating nature of 1,3-propanediamine (vide supra) combined with the non-electrolytic nature, the 1:2 cadmium(II) halide complexes with this ligand are considered as six-coordinated structures with the two halogens in the trans- positions. The metal-halogen stretching modes in octahedral cadmium(II) halide complexes and the Cd-Br and Cd-I stretching modes in four-coordinated complexes are expected to occur³⁰ below 200 cm⁻¹ the

Compound y) CN J CS \$ NCS J I-NCS/SCN •M−C SMCN Zn(DP)(NCS) 2100 sh 480 w 285 m 825 w • • • 2080 s 470 m 260 m Zn(DB)(NCS) 2100 w 816 m 483 m 280 m 2083 8 792 m **46**6 m 250 m Zn(DAP)(NCS) 2116 m 765 m 470 s 290 m 2090 m 465 sh 260 m Cd(DP)(NCS) 770 m 2090 vs 465 w 215 🕷 Cd(DB)(NCS) 2108 vs 770 m 458 ms Cd(DAP)(NCS), 760 ms 470 sh 220 mw 2085 vs ÷.. 462 s Hg(DP)(SCN) 2095 **v**s 291 w 691 m 433 m • • • ... 266 w Hg(DB)(SCN) 708 m 292 w 2113 **v**s 425 🔳 • • • ... 2066 w 417 sh 274 m $H_g(DP)(CN)_2$ 2158 в 320 m 385 s 305 w $H_g(DB)_{0.5}(CN)_2$ 2175 s 374 m 316 m Hg(DAP)(CN) 2152 ms 365 s 290 m

 TABLE V

 Infrared spectral data (cm⁻¹) of metal(II) pseudohalide complexes

lower frequency limit of the far infrared spectrophotometer used in these studies.

Metal(II) Pseudohalide Complexes

Zinc(II), cadmium(II) and mercury(II) thiocyanates gave 1:1 complexes with the diamines studied except that mercury(II) thiocyanate did not react with 1,5-pentanediamine. Rock salt region i.r. spectra indicate the bidentate chelating nature of the diamines in these compounds except the 1:1 mercury(II) thiocyanate-1,3-propanediamine and 1:1 cadmium(II) thiocyanate-1,4-butanediamine complexes which show bridging diamines. Fundamental vibrations associated with the coordinated thiocyanate groups (Table V) are consistent with terminal N-bonded SCN groups in the 1:1 zinc(II) and cadmium(II) thiocvanate complexes and terminal S-bonded in the case of mercury(II) thiocyanate complexes.³¹ The mercury(II) thiocyanate-1,3-propanediamine 1:1 and 1:1 cadmium(II) thiocyanate-1,4-butanediamine complexes are postulated to have four-coordinated polymeric chain structures (type I) with the transform of the diamine bridging between the metal ions

while other 1:1 zinc(II) and mercury(II) thiocyanate complexes are considered as monomeric fourcoordinated tetrahedral structures with cis- chelating configuration of the diamines (type II). The monomeric tetrahedral structures exhibit two bands in the ν CN, δ SCN and ν M--NCS/SCN regions consistent with the symmetry group of the compounds.³² In the cadmium(II) thiocyanate complexes (except that with 1,4-butanediamine) the bridging or chelating nature of the diamines used cannot be distinguished clearly from their i.r. spectra. These compounds exhibit less splitting of bands and the total number of bands in the range 1600-650 cm⁻¹ is slightly more than the bridged diamines complexes but much fewer when compared with chelated complexes. Hence no definite information can be derived from the i.r. spectra of these complexes.

Mercury(II) Cyanide Complexes

Mercury(II) cyanide gave 1:1 complexes with 1,3-propanediamine and 1,5-pentanediamine, but a 2:1 compound with 1,4-butanediamine. Zinc(II) and cadmium(II) cyanides did not react with the diamines

studied. Infrared spectra indicate clearly the presence of bidentate chelating nature of these diamines. The observed frequencies associated with ν CN, ν Hg – C and δ Hg C N modes are consistent with terminal cyano groups.^{7,33,34} With bidentate chelating diamines and terminal cyano groups the 1:1 complexes may be considered to have a four-coordinated environment about the metal ions.

Metal - Nitrogen Stretching Modes

The two terminal amino groups in ethylenediamine which are separated by two methylene groups are considered to have an inductive effect and thus perturb the molecular vibrations. However, in the uncoordinated 1,3-propanediamine, 1,4-butanediamine and 1,5-pentanediamine there is no interaction between the two terminal amino groups because of complete free rotation and this fact can easily be recognized from their almost identical values of dipole moments.³⁵ The basicity of these diamines show an increase from ethylenediamine to cadaverine.³⁶ Furthermore, from a consideration of the ability of the NH₂ groups to donate electron density to metal ions one may postulate the relative strength of the metal - ligand bonding in metal diamine complexes as

ethylenediamine < 1,3-propanediamine <

1,4-butanediamine < 1,5-pentanediamine.

In the present studies these diamines appear to form weaker complexes as indicated by the lower metal – nitrogen stretching frequencies (Tables II–IV) than in the case of ethylenediamine complexes. This is easily understandable by considering the flexibility of the ring size which increases from ethylenediamine to cadaverine. As a result the ring skeletal frequencies would be expected to absorb at lower energies, in fact, much closer to the expected range of metal – nitrogen stretching frequencies, Tables II–IV

ACKNOWLEDGEMENTS

We thank Professor G. B. Singh, Head of the Chemistry Department, B.H.U., for providing facilities and the U. G. C. for a fellowship (to R. S.).

REFERENCES

- 1. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds John Wiley, New York, 1970.
- 2. K. Brodersen, Z. anorg. u. allgem. Chem., 298, 142 (1959).
- 3. G. Newman and D. B. Powell, J. Chem. Soc., 447 (1961).
- 4. K. Krishnan and R. A. Plane, *Inorg. Chem.*, 5, 852 (1966).

- 5. T. Iwamoto and D. F. Shriver, *Inorg. Chem.*, 10, 2428 (1971).
- 6. I. S. Ahuja and Raghuvir Singh, Inorg. Nucl. Chem. Lett., 9, 289 (1973).
- 7. I. S. Ahuja and Raghuvir Singh, *Inorg. Nucl. Chem.* Lett., 10, 421 (1974).
- 8. G. E. Coates and S. I. E. Green, J. Chem. Soc., 3340 (1962).
- 9. D. W. Meek and S. A. Ehrardt, Inorg. Chem., 4, 584 (1965).
- 10. M. B. Farago and J. M. James, Inorg. Chem., 4, 1706 (1965).
- 11. R. J. Mureinik and W. Robb, Spectrochim. Acta, 24, 837 (1968).
- 12. A. B. P. Lever and E. Mantovani, Inorg. Chim. Acta, 5, 429 (1971).
- A. B. P. Lever and E. Mantovani, *Inorg. Chem.*, 10, 817 (1971); *Can. J. Chem.*, 51, 1567 (1973).
- N. F. Curtis and Y. M. Curtis, Aust. J. Chem., 19, 1423 (1966); N. F. Curtis, J. Chem. Soc., A, 1579, 1584 (1968).
- J. C. Bailar, Jr., The Chemistry of Coordination Compounds Reinhold Publishing Corporation, New York, 1956; A. E. Martell and M. Calvin, Chemistry of the Metal Chelate Compounds, Prentice Hall, Inc., 1956.
- 16. M. Freymann, Ann. Chim., 11, 11 (1939).
- 17. D. M. Firschenbaum and F. S. Parker, Spectrochim. Acta, 17, 785 (1961).
- L. Segal and F. V. Eggerton, Appl. Spectrosco., 15, 112 (1961).
- 19. T. G. Appleton and J. R. Hall, *Inorg. Chem.*, 9, 1800 (1970).
- 20. A. Earnshaw. L. F. Larkworthy and K. C. Patel, J. Chem. Soc., A, 1339 (1969).
- 21. T. N. Srivastava and K. L. Saxena, J. Inorg. Nucl. Chem., 33, 3996 (1971).
- 22. D. B. Powell and N. Sheppard, J. Chem. Soc., 3089 (1959).
- 23. G. Newman and D. B. Powell, J. Chem. Soc., 3447 (1962).
- 24. R. W. Berg and K. Rasmussen, Spectrochim. Acta, 29A, 319 (1973).
- 25. D. Horby and E. G. Torrible, Can. J. Chem., 43, 3201 (1965).
- 26. G. E. Coates and D. Ridley, J. Chem. Soc., 166 (1964); R. J. H. Clark, in *Halogen Chemistry* (Edited by V. Gutmann), Vol. III, Academic Press, New York, 1967.
- 27. P. E. Merritt and S. E. Wiberley, J. Phys. Chem., 59, 55 (1959).
- M. M. Chamberlain and J. C. Bailar, Jr., J. Amer. Chem. Soc., 81, 6412 (1959).
- 29. M. E. Baldwin, J. Chem. Soc., 4369 (1960).
- 30. D. M. Adams, J. Chatt, J. M. Davidson and J. Gerratt, J. Chem. Soc., 2189 (1963); G. B. Deacon and J. H. S. Green, Spectrochim. Acta, 24A, 845 (1968); G. B. Deacon, J. H. S. Green and D. J. Harrison, Spectrochim. Acta, 24A, 1921 (1968).
- I. S. Ahuja and A. Garg, J. Inorg. Nucl. Chem., 34, 1929 (1972).
- 32. R. J. H. Clark and C. S. Williams, Spectrochim. Acta, 22, 1081 (1966).
- 33. D. A. Dows, A. Haim and W. K. Wilmarth, J. Inorg. Nucl. Chem., 21, 33 (1961)
- 34. I. S. Ahuja and Raghuvir Singh, Inorg. Chim. Acta, 7, 565 (1973).
- 35. T. Pierre, Ann. Chim., 12, 93 (1939).
- 36. R. Barbucci, P. Paoletti and A. Vacca, J. Chem. Soc., A, 2202 (1970).